Enhanced cell adhesion to silicone implant material through plasma surface modification

J. Hauser, J. Zietlow, M. Koeller, S. A. Esenwein, H. Halfmann, Peter Awakowicz, H. U. Steinau

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE 20(12), volume 20, 2541–2548, DEC 2009


Abstract

Silicone implant material is widely used in the field of plastic surgery. Despite its benefits the lack of biocompatibility this material still represents a major problem. Due to the surface characteristics of silicone, protein adsorption and cell adhesion on this polymeric material is rather low. The aim of this study was to create a stable collagen I surface coating on silicone implants via glow-discharge plasma treatment in order to enhance cell affinity and biocompatibility of the material. Non-plasma treated, collagen coated and conventional silicone samples (non-plasma treated, non-coated) served as controls. After plasma treatment the change of surface free energy was evaluated by drop-shape analysis. The quality of the collagen coating was analysed by electron microscopy and Time-Of-Flight Secondary Ion Mass Spectrometry. For biocompatibility tests mouse fibroblasts 3T3 were cultivated on the different silicone surfaces and stained with calcein-AM and propidium iodine to evaluate cell viability and adherence. Analysis of the different surfaces revealed a significant increase in surface free energy after plasma pre-treatment. As a consequence, collagen coating could only be achieved on the plasma activated silicone samples. The in vitro tests showed that the collagen coating led to a significant increase in cell adhesion and cell viability.

Tags: sterimed